Financial Trading Systems, Case Re1: Example prep.:

Suppose Traders A and B are trading the same asset (delivering the same dividend payoffs across possible states), but with different information sets:

At the outset of period 1, the traders have different (period 1, period 2) information ${ }^{1}$:

Trader A's information set: (not x, not x)

Min. payoff: $\quad \$ 24$
Max. payoff: \$48
Expected value: \$36

Trader B's information set: (not z, not z)

Min. payoff: \$0
Max. payoff: \$24
Expected value: \$12

If we had the information sets of Traders A and B, we would of course have complete information, and rationally value the security according to the $(12,12)$ payout across periods 1 and $2-$ i.e, without a discount rate, the security would be worth: $\$ 12+\$ 12=\$ 24$. But neither trader has perfect information (at least at first), so let's consider the perspective of Trader B.

Suppose Trader B submits an Ask at \$24, the asset's highest possible value according to her information set, and observes that Trader A is willing to buy (\$24 is the lowest possible value according to Trader A's information). Trader B deduces that Trader A, if rational, cannot possibly share the same information set. Specifically Trader B deduces, Trader A's information must be:

[^0]Possible complementary information sets:

> (not $x, \operatorname{not} y): \quad$ Min.: $\$ 12$; Max.: 48; Exp: $\$ 30$
> (not $y, \operatorname{not} x): \quad$ Min.: \$12; Max.: 48; Exp: $\$ 30$
> (not x, not x): Min.: \$24; Max.: 48; Exp: \$36
> (not y, not y): Min.: \$0; Max.: 48; Exp: \$24
> (not z, not y): Min.: \$0; Max.: 36; Exp: \$18
> (not z, not x): Min.: \$0; Max.: 36; Exp: \$24
> (not x, not z): Min.: \$12; Max.: 36; Exp: \$24
> (not y, not z): Min.: \$0; Max.: 36; Exp: \$18

First, we can rule out (not z, not y) and (not y, not z), since Trader A is willing to pay $\$ 24$, which would exceed the expected payoffs in those sets. This leaves:

(Min.: \$12; Max.: 48; Exp: \$30
$(\operatorname{not} y, \operatorname{not} x)$:	Min.: \$12; Max.: 48; Exp: \$30
$(\operatorname{not} x, \operatorname{not} x)$:	Min.: \$24; Max.: 48; Exp: \$36
(not $\mathrm{y}, \operatorname{not} \mathrm{y})$:	Min.: \$0; Max.: 48; Exp: \$24
$(\operatorname{not} \mathrm{z}, \operatorname{not} \mathrm{x})$:	Min.: \$0; Max.: 36; Exp: \$24
$(\operatorname{not} x, \operatorname{not} z)$:	Min.: \$12; Max.: 36; Exp: \$24

Next, Trader B sees a few of the remaining information sets give expected payouts higher than $\$ 24$, and decides to raise her Ask to just below $\$ 30$. Through observing Trader A's continued willingness to buy at say $\$ 29$ (still below her expected value of $\$ 36$), Trader B further rules out Trader A having the bottom three information sets. This leaves:
(not x, not y): Min.: \$12; Max.: 48; Exp: \$30
(not y, not x): Min.: \$12; Max.: 48; Exp: \$30
(not x, not x): Min.: \$24; Max.: 48; Exp: \$36

Last, Trader B raises her Ask further somewhere just below $\$ 36$ and again observes Trader A's continued willingness to buy. Trader B thus determines Trader A must have information set (not x, not x).

By combining the two information sets (not x, not x) and (not z, not z), Trader B acquires the complete information (y, y) and so knows with certainty the asset's payouts will be ($\$ 12, \$ 12$) across the two periods. Trader B is thus always willing to buy(sell) at prices below(above) $\$ 24$ during period 1 , and always willing to buy(sell) at prices below(above) $\$ 12$ during period 2. Notice as well, the market impact on overall price-discovery from Trader B having obtained perfect information-Trader B's profiting from her complete information strengthens the central tendency for price convergence to $\$ 24$, the efficient market price.

Alternatively (just for practice) suppose Trader A had not been willing to pay more than $\$ 24$, Trader B would still have determined other valuable information, since Trader A would then need to have one of the information sets: (not y , not y$)$, (not z , not x$)$ or (not x , not z). Consider the pricing implication of these sets in combination with Trader B's information (not z , not z). Trader B would rationally determine the following: 1) In period 1 , the asset's true total value must then be either, $\$ 0, \$ 12$, or $\$ 24$. So selling the asset at it's true maximum value of $\$ 24$ is great (but we already knew that); More importantly, observing an Ask of less than $\$ 12$ (for example) from Trader A would rule out (not x, not z) as one of the remaining complementary information sets for Trader B , leaving only the other two sets as possibilities. From this Trader B would know that the asset's total value is either $\$ 0$ or $\$ 12$; 2) observing the actual period 1 payout always sharpens the information set when there is uncertainty. Consider the pricing implications of observing a $\$ 0$ or $\$ 12$ period 1 payout under this scenario for example.

[^0]: ${ }^{1}$ Example assumes a zero discount rate, and uses payoff matrices that differ from the Case's actual matrices.

